Protein Interaction & Assembly

2021 Journal Articles

Liquid–liquid phase separation of Tau by self and complex coacervation
S. Najafi, Y. Lin, A. P. Longhini, X. Zhang, K. T. Delaney, K. S. Kosik, G. H. Fredrickson, J. Shea, and S. Han. Protein Science 30 (2021), 1393-1407.
https://doi.org/10.1002/pro.4101

Homo-Oligomerization of the Human Adenosine A2A Receptor is Driven by the Intrinsically Disordered C-terminus
K. D. Q. Nguyen, M. Vigers, E. Sefah, S. Seppala, J. P. Hoover, N. S. Schonenbach, B. Mertz, M. A. O'Malley, and S. Han. eLife 10 (2021), e6662.
https://doi.org/10.7554/eLife.66662
Also published in Biorxiv.

Liquid-liquid phase separation of tau driven by hydrophobic interaction facilitates fibrillization of tau
Y. Lin, Y. Fichou, A. P. Longhini, L. C. Llanes, P. Yin, G. C. Bazan, K. S. Kosik, S. Han J. Mol. Biol., 433(2) (2021), 166731
https://doi.org/10.1016/j.jmb.2020.166731. PMID: 33279579; PMCID: PMC7855949.

2020 Journal Articles

The proline-rich domain promotes Tau liquid–liquid phase separation in cells
X. Zhang, M. Vigers, J. McCarty, J. N. Rauch, G. H. Fredrickson, M. Z. Wilson, J.-E. Shea, S. Han, and K. S. Kosik J. Cell Biol., 219 (11) (2020), e202006054
https://doi.org/10.1083/jcb.202006054. PMID: 32997736; PMCID: PMC7594490.

Dehydration entropy drives liquid-liquid phase separation by molecular crowding
S. Park, R. Barnes, Y. Lin, B.-J. Jeon, S. Najafi, K. T. Delaney, G. H. Fredrickson, J.-E. Shea, D. S. Hwang, and S. Han Comm. Chem., 3 (83) (2020)
https://doi.org/10.1038/s42004-020-0328-8

Mechanisms of heparin-induced tau aggregation revealed by single nanopore
N. Giamblanco, Y. Fichou, J.-M. Janot, E. Balanzat, S. Han, and S. Balme. ACS Sens., 5 (4) (2020), 1158–1167.
https://pubs.acs.org/doi/abs/10.1021/acssensors.0c00193. PMID: 32216272.

Electrostatic Environment of Proteorhodopsin Affects the pKa of Its Buried Primary Proton Acceptor
C.-T. Han, J. Song, T. Chan, C. Pruett, and S. Han. Biophys. J., 118 (8) (2020), 1838-1849.
https://doi.org/10.1016/j.bpj.2020.02.027. PMID: 32197061; PMCID: PMC7176579.

Electrostatically driven complex coacervation and amyloid aggregation of tau are independent processes with overlapping conditions.
Y. Lin, Y. Fichou, Z. Zeng, N. Y. Hu, and S. Han. ACS Chem. Neurosci., 11 (4) (2020), 615–627.
https://doi.org/10.1021/acschemneuro.9b00627. PMID: 31971365.
Also published in BioRxiv: 
https://doi.org/10.1101/702126

2020 Book Chapter

Tau Condensates
K. Kosik, S. Han Kumar,. Adv. Exp. Med. Biol., 1184 (2020), 327-339.
https://doi.org/10.1007/978-981-32-9358-8_24. PMID: 32096047.

2019 Journal Articles

Tau-cofactor complexes as building blocks of tau fibrils
Y. Fichou, Z. R. Oberholtzer, H. Ngo, C.-Y. Cheng, T. J. Keller, N. A. Eschmann, and S. Han. Front. Neurosci., 13 (2019), 1339.
https://doi.org/10.3389/fnins.2019.01339. PMID: 31920504; PMCID: PMC6923735.

Liquid-liquid phase separation and fibrillization of tau are independent processes with overlapping conditions
Y. Lin, Y. Fichou, Z. Zeng, N. Y. Hu, and S. Han. Biorxiv (2019)
https://doi.org/10.1101/702126

Protein shapes at the core of chronic traumatic encephalopathy
Y. Fichou and S. Han. Nature Struct. Mol. Biol., 26 (2019), 336-338.
https://doi.org/10.1038/s41594-019-0221-2

Proteorhodopsin Function is Primarily Mediated by Oligomerization in Different Micellar Surfactant Solutions
M. N. Idso, N. R. Baxter, S. Narayanan, E. Chang, J. M. Fisher, B. F. Chmelka, and S. Han J. Phys. Chem. B, 123 (19) (2019), 4180-4192.
https://doi.org/10.1021/acs.jpcb.9b00922. PMID: 30924654.

Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions
Y. Lin, J. McCarty, J. N. Rauch, K. T. Delaney, K. S. Kosik, G. H. Fredrickson, J.-E. Shea, S. Han. eLife, 8 (2019), e42571
https://doi.org/10.7554/eLife.42571. PMID: 30950394; PMCID: PMC6450672.

2018 Journal Articles

Cofactors are essential constituents of stable and seeding-active tau fibrils
Y. Fichou, Y. Lin, J. N. Rauch, M. Vigers, Z. Zeng, M. Srivastava, T. J. Keller, J. H. Freed, K. S. Kosik, S. Han. Proc. Nat. Acad. Sci., 115 (52) (2018), 13234-13239.
https://doi.org/10.1073/pnas.1810058115. PMID: 30538196; PMCID: PMC6310788.
Highlighted in the UC Santa Barbara Current:
http://www.news.ucsb.edu/2018/019293/three-player-game

Tuning conformation and properties of peptidomimetic backbones through dual N/Calpha-substitution
R. Kaminker, I. Kaminker, W. R. Gutekunst, Y. Luo, S. Lee, J. Niu, S. Han, C. J. Hawker. Chem. Comm., 54 (41) (2018), 5237-5240.
https://doi.org/10.1039/C8CC01356J. PMID: 29726557; PMCID: PMC6089238.

Heparin-induced tau filaments are structurally heterogeneous and differ from Alzheimer’s disease filaments
Y. Fichou, M. Vigers, A. K. Goring, N. A. Eschmann, S. Han, Chem. Commun., 54 (36) (2018), 4573-4576.
https://doi.org/10.1039/C8CC01355Aa. PMID: 29664486.

2017 Journal Articles

Conformation-based assay of tau protein aggregation
Y. Fichou, N.A. Eschmann, T.J. Keller, S. Han, Methods Cell Biol., 141 (2017) 89-112.
https://doi.org/10.1016/bs.mcb.2017.06.008. PMID: 28882313.

Proton-based structural analysis of heptahelical transmembrane protein in lipid bilayers
D. Lalli, M.N. Idso, L.B. Andreas, S. Hussain, N. Baxter, S. Han, B. Chmelka, G. Pintacuda, J. Am. Chem. Soc., 139 (37) (2017) 13006-13012.
https://doi.org/10.1021/jacs.7b02969. PMID: 28724288. PMCID: PMC5741281.
Highlighted Cover Article: http://pubs.acs.org/toc/jacsat/139/37

RNA Stores Tau Reversibly in Complex Coacervates
X. Zhang, N.E. Eschmann, Y. Lin, H. Zhou, J. Rauch, I. Hernandez, E. Guzman, K.S. Kosik, S. Han, PLOS Biol., 15 (7) (2017) e2002183.
https://doi.org/10.1371/journal.pbio.2002183. PMID: 28683104. PMCID: PMC5500003
Also published in bioRxiv:
https://doi.org/10.1016/10.1101/111245
Highlighted in:
http://www.medicalnewstoday.com/releases/318265.php
http://www.news.ucsb.edu/2017/018072/biophysical-smoking-gun

Signature of an aggregation-prone conformation of tau
N.A. Eschmann, E.R. Georgieva, P. Ganguly, P.P. Borbat, M.D. Rappaport, Y. Akdogan, J.H. Freed, J.E. Shea, S. Han, Sci. Rep., 7 (2017) 1-10
https://doi.org/10.1038/srep44739. PMID: 28303942. PMCID: PMC5356194

2016 Journal Articles

Adenosine A2a receptors form distinct oligomers in protein detergent complexes
N.S. Schonenbach, M.D. Rieth, S. Han, M.A. O'Malley, FEBS Lett., 590 (2016) 3295–3306
https://doi.org/10.1002/1873-3468.12367 PMID: 27543907; PMCID: PMC5039092.

Molecular and structural basis of low interfacial energy of complex coacervates in water
Y. Jho, H. Yoo, Y. Lin, S. Han, D. Hwang, Adv. Colloid Interface Sci., 239 (2017) 61–73
https://doi.org/10.1016/j.cis.2016.07.003. PMID: 27499328.

Biocontinuous Fluid Structure with Low Cohesive Energy: Molecular Basis for Exceptionally Low Interfacial Tension of Complex Coacervate Fluids
K. Huang, H. Yoo, Y. Jho, S. Han, D. Hwang, ACS Nano, 10 (2016) 5051-5062
https://doi.org/10.1021/acsnano.5b07787

Protein structural and surface water rearrangement constitute major events in the earliest aggregation stages of tau
A. Pavlova, C. Cheng, M. Kinnebrew, J. Lew, F. Dahlquist, S. Han, Proc. Natl. Acad. Sci., 113 (2) (2016) E127-E136
https://doi.org/10.1073/pnas.1504415113. PMID: 26712030; PMCID: PMC4720316

2015 Journal Articles

Tau Aggregation Propensity Engrained in Its Solution State
N. Eschmann, T. Do, N. LaPointe, J. Shea, S. Feinstein, M. Bowers, S. Han, J. Phys. Chem., 119 (45) (2015) 14421–14432
https://doi.org/10.1021/acs.jpcb.5b08092 PMID: 26484390; PMCID: PMC4645975

Mussel Coating Protein-Derived Complex Coacervates Mitigate Frictional Surface Damage
D. Miller, S. Das, K. Huang, S. Han, J. Israelachvili, J. Waite, ACS Biomater. Sci. Eng., 1 (11) (2015) 1121–1128
https://doi.org/10.1021/acsbiomaterials.5b00252 PMID: 26618194; PMCID: PMC4642218
ACS Editors' Choice Paper

Functional Consequences of the Oligomeric Assembly of Proteorhodopsin
S. Hussain, M. Kinnebrew, N. Schonenbach, E. Aye, S. Han, J. Molec. Biol., 427 (6B) (2015) 1278-1290
https://doi.org/10.1016/j.jmb.2015.01.004 PMID: 25597999; PMCID: PMC4374980

2014 Journal Articles

Determining the oligomeric structure of proteorhodopsin by Gd3+-based pulsed dipolar spectroscopy of multiple distances
D.T. Edwards, T. Huber, S. Hussain, K.M. Stone, M. Kinnebrew, I. Kaminker, E. Matalon, M.S. Sherwin, D. Goldfarb, S. Han, Structure, 22 (11) (2014) 1677-1686
https://doi.org/10.1016/j.str.2014.09.008 PMID: 25438671.

2013 Journal Articles

Structural Insight into Proteorhodopsin Oligomers
K. M. Stone, J. Voska, M. Kinnebrew, A. Pavlova, M. J. N. Junk, S. Han, Biophys. J., 104(2) (2013) 472-481
https://doi.org/10.1016/j.bpj.2012.11.3831 PMID: 23442869; PMCID: PMC3552253

Transmembrane Protein Activation Refined by Site-Specific Hydration Dynamics
S. Hussain, J. M. Franck, S. Han, Angew. Chem. Int. Ed., 52(7) (2013) 1953-1958
https://doi.org/10.1002/anie.201206147 PMID: 23307344

2013 Journal Articles

Annual Review of Physical Chemistry
Vol. 64, Annual Reviews (2013)
Dynamic Nuclear Polarization Methods in Solids and Solutions to Explore Membrane Proteins and Membrane Systems
C. Cheng and S. Han
https://doi.org/10.1146/annurev-physchem-040412-110028 PMID: 23331309

2007–2010 Journal Article

Site-specific Dynamic Nuclear Polarization of Hydration Water as a Generally Applicable Approach to Monitor Protein Aggregation
A. Pavlova, E.R. McCarney, D.W. Peterson, F.W. Dahlquist, J. Lew, S. Han, Phys. Chem. Chem. Phys. (PCCP) 11 (2009) 6833-6839
https://doi.org/10.1039/b906101k PMID: 19639158; PMCID: PMC3153360